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The values of effective rheological characteristics and of the particle self--dif- 
fusion coefficient in concentrated Brownian suspensions are estimated. 

The classical theory of Brownian particles [i] was developed for the limit of dilute 
suspensions, in which the interparticle interaction is assumed to be totally negligible. It 
is natural to expect that collective effects in concentrated systems, generated by Brownian 
motion near particle locations, can affect the rheological properties of the mixture and the 
characteristics of diffusion processes. This effect is analyzed below. 

Rheological Properties. The effect of particle diffusion motion on rheological proper- 
ties of suspensions was first investigated in [2], where it was shown that this motion en- 
chances the system viscosity in comparison with the situation in which the particle chaotic 
displacements can be neglected. The analysis of [2], however, was carried out only for dilute 
mixtures, in which one can isolate two hydrodynamically interacting particles without taking 
into account the presence of remaining particles. 

In most studies known to the present authors (see, for example, the review [3]) the 
problem of Brownian effects on the rheological properties of the suspension has generally not 
been treated. At the same time the results of [2] make it possible to expect that for con- 
centrated systems these effects must be substantial. As a matter of fact, the experimentally 
determined dependences of the suspension viscosity on the disperse phase concentration, ob- 
tained by various authors, occupy a quite wide band in the (q, p)-plane (see Fig. i). The 
most correct calculations of the function N(p), carried out within models in which particle 
diffusion is neglected, are in the lower part of this band [4]. This spread of experimental 
data can be fully due to the apparent dependence of Brownian effects on experimental condi- 
tions. The effect of internal diffusion on the effective viscosity of moderately concentrated 
(p~0.2) suspensions was considered in [5]; here systems are investigated with an arbritrary 
disperse phase concentration. 

The suspension is considered as a system of identical solid spheres, suspended in a 
Newtonian fluid. Many equivalent relations [2-4, 6] are known for determining N. We use 
here the representation following from the results of [6]: 

4(~l--~lo) e . e - -  3p 4zra 3 ~ ((r+ uT + a+ uo -[- cr+ u~) dr, 
r ~ c t  

where u is the mean suspension velocity. 

The e and u components are related as usual. 
example, 

In a Cartesian coordinate system, for 

(i) 

! ( Oui + Ouj 
eij : - - Z - - \  Ors Ori ] '  i, ] = x, y, z. (2) 

The i n t e g r a t i o n  i n  (1 )  i s  c a r r i e d  o u t  o v e r  a s u r f a c e  o f  an a r b i t r a r i l y  s e l e c t e d  t r i a l  
s p h e r e .  We emphas i ze  t h a t e a n d  u c o r r e s p o n d  t o  s u s p e n s i o n s  in  a homogeneous f l u i d ,  w h i l e  ~* i s  
determined with account of perturbations due to a test particle in the averaged flow. 

The stress ~ the sum of the hydrodynamic stress o~ , formed by the perturbated 

flow near the test sphere, and the Brownian stress ~ , accompanying the diffusion motion 
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Fig. i. Relative effective suspension viscosity 
as a function of the bulk concentration of the 
disperse phase: i) the theory suggested; 2) the 
empirical equation of [9]; 3) calculations of 
[4] for the binary distribution function n o in the 
Percus-Yewick form; 4) calculation [4] for p0 
in the form (12); the dashed lines are the bound- 
aries of the spread of experimental data, selected 
in [4]. 

Fig. 2. Relative mobility of spherical particles 
(60 = (6~q0a) -I) as a function of their bulk con- 
centration: i) the theory suggested; 2) calcula- 
tions of [4] for the binary distribution function 
n ~ selected in the Percus-Yewick form. The points 
are results of various experiments, included in [4]. 

of the disperse phase near the test particle [i, 5]. The physical reason for the generation 

of o~ is the fact that the convective flow destroys the statistical homogeneity of the 

particle distribution, while the diffusion motion tends to conserve it. Internal flows are 
generated in the suspension as a result, to overcome which it is necessary to apply sup- 
plementary forces. 

The basic complexity of the physical mechanics of the mixture is determining the flows 
near the test particle, since in this case it is necessary to take into account the large 
number of remaining terms. Obviously, the most exhaustive analysis of this problem was car- 
ried out in [7], where it was shown that the hydrodynamic stress o~ can be determined 
from the solution of the problem: 

--VO+ =0; divu+:O; r > a ;  u+:O,  r : a ;  u+-+u, r--+oo; 

o + = - -  p +  1 -F 2~1 + (e+ - -  e) -F 2~qe; lq+ (r) = +1o + (+1 - -  +1o) p+ (r) 
P 

(3) 

where e + and u + are related as in (2). The function p+(r) is the conditional bulk 
concentration of the disperse phase near the test sphere. Its physical meaning is the prob- 
ability of finding the point r inside one of the particles if the test particle is fixed at 
the origin of coordinates. The shape of p+(r) for systems with a homogeneous distribution 
of the disperse phase was analyzed in [4], and is discussed briefly below. 

In the theory of [7] the test sphere is considered as immersed in a fictitious conti- 
nuous medium, whose properties are dictated by the shape of the conditional bulk concentra- 
tion p+. Repeating the considerations of [5], within this model we reach the following 
representation for the Brownian stress o~: 

,,+ = - p ~ i ,  v p  + - ,,+ a ~  (p+) v p + ,  
Op + 

(4) 
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into account that D e = ~a~lap, and substituting p~ from (10) and o~ into (i), Taking 

we calculate the integral appearing there in the form of a nonlinear function of q and $. 
Thus, Eq. (i) is transformed into an equation in q, containing $ as a parameter. To close 
the problem it is necessary to determine the particle mobility 8. This quantity has been 
estimated numerous times by various authors [3] without taking into account diffusion motion. 
Starting from the definition of the hydrodynamic mobility, we have the following relation: 

~-lu = j" ((~+cosO-- or+o sin O) dr, (11) 

where the integration is carried out over the surface of the test sphere, and 8 is the angle 
in a spherical coordinate system with the axis along u. 

The quantity o + can now be determined on the basis of the discussion above, if one 
assigns the mean velocity u in (3) at an infinite distance from the test sphere. As a result 
we calculate the integral (ii) in the form of a function of q and ~, obtaining the same equa- 
tion in 8, containing q as a parameter. Thus, following these operations, Eqs. (I) and (ii) 
are two nonlinear equations in q and 6, solving which we determine the rheological properties 
of the suspension within the approximation considered. 

The realization of this program is rendered difficult by the complexity of solving (3) 
if p~ is selected in the form of a smooth function, such as (9). The calculations are 
simplified by neglecting particle nonoverlapping and putting p0 = p. This approximation, 
assumed if p is not too large (as a rule p~< 0.25), was investigated in [5]. In analyzing 
higher concentration systems it is convenient to use step function approximations of p(r). 
The simplest step function approximation p0 is: 

po= {o, r~2a, (12) 
p, r > 2 a .  

In  t h i s  c a s e  (3)  f o r m a l l y  c o i n c i d e s  w i t h  t h e  p r o b l e m  o f  a p a r t i c l e  p l a c e d  in  a c o n t i n u o u s  
medium, e q u i v a l e n t  in  i t s  p r o p e r t i e s  t o  t h e  s u s p e n s i o n ,  and d i s t i n c t  f rom t h e  t e s t  s p h e r e  by 
a c o n c e n t r i c  l a y e r  o f  t h i c k n e s s  a ,  f i l l e d  by a p u r e l y  d i s p e r s e  f l u i d .  To s i m p l i f y  t h e  c a l -  

c u l a t i o n s  we use the approximation p'=~a3n ', which is similar to the representation (12) 

of the function (9). Taking into account (7), the solution (3), (6) is elementary [6], but 
the results have an awkward shape, and are therefore not provided. 

Figures i, 2 compare results of calculations by the theory suggested with results of 
various experiments and with the calculations of [4], carried out, as above, by the methods 
of [7], but without including Brownian stresses, corresponding to the case Br >> i. We note 
that in [9] were given empirical equations for the dependence of q on Br, but subsequent 
analysis of the function q in a wide range of Br numbers, though known to the authors, is 
not provided. 

There exist very few experimental studies of the dependence of theological properties 
of dispersion on Br. The experimental data selected in the review [9] show a decrease in 
the dependence q(Br), verifying the hypothesis of enhanced effective suspensions viscosity 
due to internal diffusion processes. 

Self-Diffusion Coefficient. The thermal motion of Brownian particles is characterized 
by two diffusion coefficients. The first is the gradient diffusion coefficient D e , relating 
the particle concentration gradient with the diffusion flow. The second is the self-dif- 
fusion coefficient Ds, determining the value of particle displacements during their random 
walk in an isotropic suspension. In the limit of dilute media D e and D s are equal [i], but 
this is not the case for concentrated systems. However, the nature of the p-dependence of 
D e and D s is different [8, i0]. 

The effect of collective effects on D e and D s was first investigated in [I0], following 
which the p-dependence of D s was analyzed in [11-15]. Even though very dilute systems were 
considered in [10-15] (p << i), and only binary particle interactions were included:, the 
results of these studies are different, which is explained by the complexity of accounting 
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where p~ means the pressure created at the surface and near the test sphere by particles 

performing convective-diffusive motion, and p(x) is the chemical potential of the solid sphere 
system, whose bulk concentration is x. This quantity was estimated, for example, in [8]. 
The function n + is the numerical concentration of the disperse phase near the test particle, 
related to p+ by the relation [7]: 

p+ (r) = .I n+ (r') dr'. ( 5 )  
I r - - r ' l ~ 2 a  

The concentration n+(r) can be determined by solving the problem of convective par- 
ticle diffusion near the test sphere, being in the stationary case 

v D e  (n+) vn+ -- u+vn+ ~ O, r > 2a; 

(6) 
De(n+) n+ q-  n+u+ - -  O, r -~ 2a; n+ --~ n,  r -,,- oo. 

Or 

The first boundary condition of (6) follows from particle nonoverlapping, due to which 
the radial component of the disperse phase flow vanishes at the test sphere for r = 2a. The 
second is a consequence of the principle of correlation attenuation. The diffusion coef- 
ficient D e was estimated in [8]. 

The problem (3)-(6) is substantially nonlinear. Its solution is simplified for small 
Brenner Br = ea2/De or Peclet Pe = ua/D e numbers, when diffusive motion plays a decisive role 
in the formation of the disperse phase distribution. 

sidered below. 

We put 

p' 
n + = n  ~  p + = p ~  

p~ 

Precisely these situations are con- 

~r 
n ~ ~-,Br, Pe(< 1. (7)  

The quantity n o can be determined by solving independent problems of statistical physics. 
The simplest variant of n ~ taking into account particle nonoverlapping, is 

n ~ 

0, r ~ 2 a ,  

n ~ -  . ,3p r > 2a. 
4rta z ' 

(8) 

The corresponding value of the equilibrium condition of the bulk concentration p0, deter- 
mined from (5), is such that: 

p ~  ~ < 1 ;  p ~  
27 - -  56~ q- 30~ = ~ V=~ 

f,~ ~,, ~>3;  ; =  r 
a 

p, 1 < ~ < 3 ,  

( 9 )  

Other variants of n o and p0 were considered in [4]. It car, be shown that only those 
parts of the hydrodynamic stress o~ , determined from (3) for p+ = p0 without account of 
p', provide a contribution to the integral (i). 

The calculate N we assign the mean tensor of suspension flow velocity e Putting 

u=e.r, p+=9~ from (3) we calculate o~ and u+ . Further, from the linearized variant of 

(6) we determine n'. Calculating p' rrom (5), within the linear approximation in Br we find 
from (4) 

p~- = n ~ O~ (p~ p,  (10)  
ao o 
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Fig. 3. Comparison of calculation 
results of the self-diffusion coef- 
ficient of spherical Brownian par- 
ticles by the theory suggested with 
experimental data [15]: i) ~ selected 
in the form suggested by the present 
theory; 2) in the form [4] for n o 
selected in the Percus-Yewick form. 
The parameter D o is the diffusion 
coefficient of a single particle. 

even for the binary interaction of chaotically moving spheres. A concentrated suspension of 
Brownian particles can be considered as a dense gas with a hydrodynamic noncentral and non- 
conservative interaction. A rigorous investigation of such a system is encountered with 
insurmountable mathematical difficulties. Therefore, at the present phase of analyzing 
Brownian motion in concentrated systems it is advisable to use approximations having a clear 
physical meaning, which may need to be made more complex while allowing substantial simplifi- 
cation of the computation. 

The Langevin equation describing the motion of an arbitrary test Brownian test particle 
can be written in the form: 

du 
m -=f H d- fr, (13) 

dt 

where m and u are its mass and velocity. 

The hydrodynamic force f~ depends on the particle motion velocity in the field of 
random flows, created by other moving particles. These flows are generated, firstly, during 
reflection of perturbations accompanying a test sphere moving away from neighboringparticles, 
and, secondly, directly by chaotically displaced particles surrounding the one considered. 
The first effects are similar to the collective effects generated in a regularly moving sus- 
pensions, and reduce the disperse phase mobility. The second ones lead to further chaotic 
particle motion. It can be expected that this generates an increase in the self-diffusion 
coefficient. 

In analyzing the motion of a Brownian particle it is necessary to take into account that 
the random walk of neighbors screens it from the effect of the remaining particles. In this 
case the problem of determining fm can be solved by means of the known reflection method 
[3, I0]; this path, however, leads to very awkward final relations. To simplify the calcula- 
tions we restrict ourselves to the first step of this method only, considering the test sphere 
in the hydrodynamic field of nearest neighbors, whose motion is not perturbed by the effect 
of the test and of the remaining particles. For regularly moving dense suspensions this ap- 
proximation is too crude, but the statistical nature of the behavior of Brownian particles 
renders it more valid. This is stated in more detail below. 

If, as assumed below, the conditions are realized for which one can neglect the inertial 
terms in the expression for fs, then within the approximations made 

(14) 
~H = ~-~ ( u  - -  u), 
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where is the total fluid velocity, created at the point of finding the nearest neighbors 
of the test particle. 

Taking into account that the viscous relaxation time of Brownian particle motion is 
shorter than the propagation time of the hydrodynamic perturbation at scales of order a, 
nearest particles to the test particle are assumed to be uniformly moving. In this case 

U = Z i V , ( r ,  t) ~,, (r) N (r) dr, i, ] = x ,  y, z. 
i o 

(15) 

The function N(r) can be assigned by the well known nearest neighbor distribution [17], 
but the calculations become very awkward in this case. To obtain estimation results allowing 
to analyze the essence we assyne that the particles nearest to the test particle are dis- 
tributed withdensity n o inside a coordination sphere of radius 2ap -l~a. This approxima- 
tion is similar to that often used in solid state theory [18]. The approximation (8), (15) 
selected for n o is rewritten as: 

2ap--1/3 

U i =  ~ n  .i Vi(r, t )+u(r )dr .  ( 1 6 )  
i 2a 

The function gi:i is derived in almost all textbooks of hydrodynamics (see, for example, 
[16]). Equation (14) is further analyzed by methods of the theory of correlation functions 
[19], according to which each random quantity h can be represented in the form of a Fourier- 
Stieltjes integral with a random Wiener measured Zh: 

h (r, t) = ] exp (loot + ikr) dZA, i = 3/---~1~, (17) 

while the correlator of the quantitites h and g can be expressed as: 

h (t + ~, r + x), g (t, r) ) = S exD (io~t + ikr) XIrhr (m, k) dcodk, 

vi_/h~ = < dZhdZ~ ) 
do~dk ' 

(18) 

where the asterisk denotes complex conjugation. 

Representing the random functions (14) in the form of Fourier-Stieltjes integrals, we 
obtain, for example: 

2ap--l/3 
animdZuz = ~-1 (9~1 --- 1) dZuz+ dZr , 9Y = n ,i %~_ (r) exp(ikr) dr, dZT =--dZ~T, ( 1 9 )  

2a 

if the direction of k is selected to be the z axis. In deriving (19) it was taken into 
account that all particles are equivalent, and therefore dZv=dZu . We note that it is 
precisely the statistical equivalence of particles which allows not to include in (15) the 
effect of all particles on the motion of nearest neighbors toward the test sphere, since 
this effect is self-consistently accounted for by the equality of measures dZ V and dZu. 

Using for ~zz the known results of [16], we obtain 

2ap--l/3 
9Y -- 9a3 n I rZdr j sin OdO exp (ikrcos O) X 

4 r + - - ~ r  3 ( 3 c ~  . 

(2o) 

We further have from (19) 
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dZr 
d Z . =  (21)  

By definition the self-diffusion coefficient D s equals: 

D, = ~ lira < z (t) z (0) > 
2 t ~  t 

where z is the Cartesian coordinate of the mixture. Due to constraining effects the measure 
of llzll of the set {z} does not coincide with the measure lIZll of the set {Z} of all points 
of the medium. Introducing, as is usually done in the theory dense gases, the assmned volume 
w = (i - p/p,)W, where W is the volume of the whole mixture, and p, = 0.7 is the dense con- 
centration, we arrive at the estimate ilzll,~(1--p/p.)l/311ZII. Using further the known procedure 
of deriving the Green-Kubo equation [20], we obtain 

2 

(22) 

From (18) and (21) we have 

vF,~% ~_ 1Frr ( 23 ) 
~-2 ( | __ ~0)2 + m2o92 

To determine PTT we take into account that fT possesses properties of white noise 
[20], while the action of fluid molecules on a particle at different positions is uncorre- 
lated. Therefore <f(t, r)f(0, 0)>=a~(t)6(r) where 6 is a delta-function. Using in (18) the 
vanishing of this correlator, we obtain 

O; 
~Tr - 

2~ 
(24)  

where a is a so-far undetermined parameter. To calculate it we use the theorem of equally 
distributed energy over degrees of freedom, whence 

3 T ( 2 5 )  
2 m 

Hence and from (23) it follows that 

T T r r  (co, k) dcodk. (26)  
m = f f~-2 ( i  - -  v9) ~ + m2~o 2 

Substituting (24) into (26), we obtain an expression for a: 

~_~ ( i  k2dk ) - i .  
o~-- - -  JT, d----- - -  (27) 

2~ 1 -- p? 

Using now relations (23), (24), and (27) in (22), we reach the result: 

6 (I -- PT) 2 

Calculations show that FJ = i. The factor FJ in (28) describes the stimulating effect 
of chaotic motion of neighbors on Brownian particle displacements. The equality FJ = I 
implies that there exists no such stimulation, while the effect of collective effects reduces 
to lower particle mobility and generation of exclusive volume effects. Analysis shows that 
this conclusion does not change for any choice of N in (15), as well as by including inertial 
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terms in (14). We note that in estimation f~ in (14) we included above the basic compo- 
nents of this force. Therefore, the random flows created by neighboring particles cannot 
strongly affect the coefficient Ds; the problem of a more refined effect remains, however, 
open. 

Figure 3 shows a comparison of D s calculations by (28) with experiment [15]. Taking 
into account the large number of assumptions made, the agreement between theory and experi- 
ment can be considered to be quite good. 

NOTATION 

Here a denotes the particle radius, e is the mean value of the velocity tensor of sus- 
pension shear flow, f, and fT are the hydrodynamic and thermal interaction forces of a 
Brownian particle with the fluid, l is a second unit tensor, k is the wave vector, n is 
the mean number concentration of the disperse phase, N is the distribution density of nearest 
neighbors, p is the pressure, r is the radius-vector, directed from the center of the test 
sphere, t is time, v(r,O is a random particle velocity, next to the test particle, found 
at moment t at the point r, ~ is the hydrodynamic particle mobility with account of their 
interaction, n0 is the viscosity of the dispersion fluid, D is the effective suspension 
viscosity, p is the bulk concentration of the disperse phase, ~ is the stress, ~j(r) is a 
function relating the i-th component of v(r,O with the j-th component of the flow velocity, 
accompanying this neighboring particle at the origin of coordinates, and ~hg denotes the 
spectral density of processes h and 8. The subscripts r, 8, ~ ,..., denote components of 
vectors and tensors in a spherical coordinate system with origin at the center of the test 
sphere, the superscript _ is the mean value of a quantity near the test particle, 0 and ' 
are the equilibrium and perturbed values of convective particle flow, and (') denotes dot 
product. 
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